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=

=] /\_\ﬁ'—l( J'ﬁ-l‘-l'lil =]

- _ Query Ranking List Choices:
D ¢ 2) Push himself
& Agroup of — b) Steer Wheel
ad A o v R Fr
i are playin ) Hold on 0 long rope
Somcing Logs iang bk Tl Sioka - Droing bl Sebon g | | Quei: ’ e
. gume id the man in red pents keep :
(a) Video Action sttt 2) Hold on to Tong rope
d.1) Text-to-Video Retrieval
@n e.2) Video Question Answering - MCQ
% Query Ranking List
i Awo X
Dwmg 2 Awomnis out e i
5 Someone s alkin et
(b) Temporal Action Localization (TAL) ]
(d.2) Video-to-Text Retrieval ] e b——22y
We sce the opening tide screen We see the ending title sercen
(- I T o5 h—————— 055
Question: A manin  room holds a bike and talks o camera
‘What s the man holding at o o
the startof the video? “The man adjusts and take off the fron tire, and folds the bike in half on itself
~ Diving o Answer: il —
 —— Guitar The man unfolds the bike and puts the tire back
(c) Spatio-Temporal Action Localization (STAL) (e.1) Video Question i (f) Video Captioning /
Tnput
Adog wearing
Asuperhero
outit with red
cape flying
through the
sky. - | =
(g.1) Text-to-Video Generation (g.2) Video Prediction/

2 SHENITEMRES . EPIMESEERIEN—MES, R
BB AR AL R & R R R IR YRR ST U
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{ Q: Why did Michael accept the position of the godfather? ]

A: Because Michael can't avoid taking over the family business, along with
his family's loved ones being murdered in droves.

i C3: Someone came | C4: Michael had a
| after Michael in Italy | ceremony to accept the
| and blew up his wife. | position of the godfather. ]

C1: Michael’s father, | | C2: The original Godfather’s
the old godfather, | | successor, Michael’s brother
was assassinated. | | Sonny was shot.

—====n
FTTTTTa

1

00:44:37<> 00:46:16  01:56:10 <> 01:58:44 02:05:59 <> 02:06:36  02:52:36 <> 02:53:05
) Clue-1 Length: 99s Clue-2 Length: 154s Clue-3 Length: 37s Clue-4 Length: 29s

R84

4

Video length: 7708s

3 MNERAERE: (1) BERAMNKIMM (2) EREM, TE
MK ERERFVIER. BERERTRES, FREERDZ.

2




Video Agent Y7
[e]e]e]e] Telelele)

AT 4{XHE MLLM / Video-LLM F5?

o YUAKEREM. HBEZR, ERE— 1 HEEIMNRENIE.

o KIREVHIERRE: BIANFEIR AL/ NE. OCR FHHEEFER
W/NMERL, BT PUBILIE BN TR TR%b.

® Scale towards multi-turn: HLOMEFFFELRITERRE,
FEIEA ReAct [19] XF Agent SEI{
(Observation-Reasoning-Action) o

* FF context FIPRS, KMIAFELS memory, ELILEA
HY contexto

HERFUHHNR/FRBE
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Agent FIHE&

Level 1: Chatbot Level 2: Reasoner Level 3: Agent
(Language model) (Reasoning model) (Agent model)

0@ 2@ .2

= (multi-rounds)

. slow think A

direct respond \ ';/
p before respond

iterative slow think & action
before respond

B 4 KIERIRYTEZ B M Chatbot EJ Reasoning Model (P4 OpenAl
ol ARFE), BEF| Agentic Model (P4 OpenAl 03 HRFEK)
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Agent FIHE&

T4 Agent?

Memory

Short-term  |«.....| Long-term

?\a“«\“‘? S

<09®

5: B] OpenAl safety A58 A, Thinking Machines Lab BX£l Lilian
Weng 21T Agent FIIER.
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3 Video Agent FIME&

Prompts Vector DB and SQL DB
In-context learning Retrieval-Augmented Generation (RAG)

6: Agent FUZEEZ: Planning,

Tools, Memory, Action 7: Video Agent FIXT L B &R

EARRIER, Action := Video Question Answering;
Planning RT3 &4 T1E; Tools & Memory ‘2F¥EBHD T 1E.
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3 Video Agent FIME&

Toolkit:

* merge, crop, trim, count, OCR

- object/action detection, track, pose estimation
«+  video grounding/captioning/summarizing

< VQA

ﬁ use
@ Agent.
+ LLM planner
« frame selector store output
+  program generator
« program refiner
f +  MLLM evaluator
e

input

o

Memory:
* textrepository
+ structured object information

p
N
-
ol
\

8: Video Agent BI715)
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KR TSR AR B

i B A: There isadark blue |
i jacket hanging on her H
i black backpack 1
i High frame efficiency }

9: ZMERARERMNTTEDTT— 1 IRTT viog

Video Agent BEEFEMN —FIHAXBRERNBR. Flt, &
R T —FhE e L BB RE L Agentic Keyframe Search.

HERFUHNER/




Planning: X@MUIERE X

0O0@000000000

B |
_ 3 - _//x 3 -
CO®C
\2\ 1 "‘-7/ F\r’! -\ 3
( S . k\g/l__qﬂ_ﬂ__h_"j (‘_;:\']
u _\_\_\-\_"_"-—_._\_ - ___,_,-"‘"-F—d_ \\.___,-f'll
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Planning: Xy
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s BEAM: KIETBZMXRES, TUARKRBZ DM,
o Ta: PSAYIA  (Video Segment) o

o AIML: &M A B EhFED.

o FMZZ: A M m A RIELTNER.

o MR LLM BRITHEEE EBE 0 EE D M.

o KIEM: BRALE, FENATMES.
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BIERM

A" Search Algorithm

not actually reach
the target node

i
Diskstra’s algorithm & cluctted guess

£(n) = g(n) + h(n)
£(n): the estimate of the total cost from start node to
target no rough node n
/ ‘\ 9(n): actval cos: m start node to node n
h(n): estimated + from node n to target node

\heuri function
\_/‘_\ ‘/’\
f \/5\ a(n)

h(n) .
ij F ) actual cost estimate cost
start node node n arget node

REMBREZARNEE f(n) RREFTRTR no
g(n) @B, h(n) BBEXEE.

¢ Dijkstra Algorithm: f(n) = g(n)
® Greedy-Best First Search, GBFS: f(n) = h(n)
e A* Algorithm: f(n) = g(n) + h(n)




Planning: X@MIERE
000008000000

YRR EY (Cost Function) BIENX

Destination (Question)
Wha did the person;

yS-Dijkstra 1) A language ag (AKeyS-Dijkstra.2) Segment 3 is considered the node that minimizes the
changes. Segment 3 has scene change (moving from outdoor to lnducv). movement cost function and is subsequently expanded.

o BARRE h(n): FMEFLLE, HBTRKXT ZOMERFEE?
o BERN g(n): MBI HR/ TEMETREARKEIZL?

HERFHHIR/H
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&% (Cost Function) HFIENX

1. unsampled shot 2. sampled shot 3. oversampled shot

| seg0 | segl | seg2 | seg3 | seg4 | seg5 |
f0 fl 2 f3 f4 5 f6
scene change dramatically scene change slightly no scene change

11 BFRHMRMEX HIGFEUN “FEE
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Question: Summarize the process ¢ uses to prepare her brush for painting and
how it contributes to the artwork's quality.

A. ¢ cleans the paint brush in her right hand in the small cup on the floor,
which helps to keep the brush clean and free of debris.

B. Skillfully, c mixes paint on the paint board using the brush in her right hand
which enables her to effortlessly create a wide variety of different colors and
shades for her artwork.

C. Skillfully, ¢ picks paint from the paint board using the brush in her right
hand, which conveniently allows her to apply paint gracefully onto the canvas.
D. ¢ looser o ty on the paint brush in her ight hand in the smal
cup on the floor,

E. Carefully, ¢ paints with the paint brush sknll(ully on the art work displayed
on the canvas, which is the ultimate, final step in the entire painting process.

12: — A { 1L SEf)
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1 EREER, FETHENT VideoTree [17] HIFRTT.

Model (M)LLM EgoSchema [7] NExT-QA [18]

Sub. Full Tem. Cau. Des. Avg.

Based on Open-source Captioners and LLMs
MVU [12] Mistral-13B 60.3 37.6 55.4 48.1 64.1 55.2
LangRepo [5] Mixtral-8x7B 66.2 41.2 51.4 64.4 69.1 60.9
Video-LLA+INTP [13] Vicuna-7B v1.5 - 38.6 58.6 61.9 72.2 62.7
Based on Proprietary MLLMs
IG-VLM [6] GPT-4V 59.8 - 63.6 69.8 747 68.6
LVNet [10] GPT-40 68.2 61.1 65.5 75.0 815 729
Based on Open-source Captioners and Proprietary LLMs

ProViqQ [1] GPT-35 57.1 - - - - 64.6
MoReVQA [8] PaLM-2 - 51.7 64.6 70.2 - 60.2
Vamos [14] GPT-4 51.2 48.3 - - - -
LLoVi [20] GPT-4 61.2 - 61.0 69.5 75.6 67.7
VideoAgent [15] GPT-4 60.2 54.1 64.5 72.7 81.1 713
VideoAgent [3] GPT-4 62.8 60.2 - - - -
LifelongMemory [16] GPT-4 64.1 58.6 - - - -
VideoTree [17] GPT-4 66.2 61.1 70.6 76.5 83.9 75.6
AKEYS (Ours) GPT-4 68.0 (1.8 1) 63.1 (2.01) 72.3 (1.7 1) 78.2(1.7 1) 85.4 (1.51) 77.4 (1.8 1)

AKEYS (Ours) GPT-40  68.6 (2.4 1) 63.6 (2.51) 72.9 (2.3 1) 79.0 (2.5 1) 86.1 (2.2 1) 78.1 (2.5 1)
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=
B
L

Accuracy (%)

w =2
o (=]
!

—— LLoVi [20]
— VideoAgent [15]
— VideoTree [17]
—— AKeyS (Ours)

W
[N
L

544

2’ 2! 27’ 2° 2
Number of frames processed

13: M TTEEBRSMMEZE. M VideoTree [17] HHLE, KZIHH
BIHERER (66%), ITWTTEXAT 1/4 7R
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RNEERE AL

7 20 A¥ BURRURR ST EHRE T A* BOAMEX T BFS BOARIRTT,
XRRMEE f(n) BTN

Algorithm Accuracy # Visible Frames
AKEYS-BFS 64.7 31.2
AKEYS-GBFS 67.0 27.3
AKEYS-DIJKSTRA 66.8 27.6
AKEYS-A* 68.0 (3.3 1) 27.9

HERFUHHNR/FRBE
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TEEK LLM B

3R 3: GPT-40 WRERLF

Base LLM Accuracy # Visible Frames
GPT-4 68.0 27.9
GPT-40 68.6 26.7
03-MINI 67.3 28.3
DEEPSEEK-R1 67.6 26.9
LLAMA-3.3-70B 65.2 27.4

HERFUHHNR/FRBE
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Motivation: it LLM AT E, RN 6)ZEM

I In this video, how many red socks are above the fireplace at the end of this video ?
1

Calling frame-selector to select frames at the end of this video. @

: @ Frame-selector: Frame <06~ selected.

Frame <176

Q Object-detector: 3 red socks detected above the fireplace.

1

1

1

I

\

1

1

I Calling object-detector to detect red socks for frame <66 @

1

|

\ 1

1 1

] The answer is 3. @l
]

1

14: XN RIBERHANFEHBENOM, BAHEBREN (object
detection) TEf#ER.
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Motivation: it LLM AT E, RN 6)ZEM

1
1
1
\
1

----------------- L e T L el

‘What's the trigger that set off the war mentioned in the video? Select from the below options:
A. Militarisim. B. The assasination of Archduke Franze Fredinand. C. King Edward III of England's claim to the French throne.
D. Germany's blitzkrieg against Poland.

Calling Image-grid-QA-tool. Question: Which war is mentioned in the image sequence? @

K

Image-grid-QA-tool: Use frame < |~ 11><21><31><41><5]><61><71><81> to form a 3*3 image grid.
Answer: This image sequence mention the First World War in frame < 1.

Calling google-search for the trigger of World War L. @

P

Google-search: the trigger of World War I is the ination of Archduke Franze Fredinand.

The answer is B. @ !
1

15: §FXJ knowledge-intensive Video QA 1%, FEXRIREHRIANIAK
FRAVIES, ARKERIE (google search) RAiZR.




Tools & Memory: T EfHfEE
000e000000000000000

Motivation: 1.t LLM B TR, R (6)Z o)

Reasoning over Computer Vision Results

Natural Language Output

7
J
J

Natural Language Interface

[ detection ] [ track ] [ recognition ] [ segmentation

16: BAERH: BEARESSERRTEMNER, FotiTHE
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$F—2: XL Video Toolkit

17: MR TRRARER.

& Generalist Solutioner

Base tool that answers general questi-
ons without using any external tools.

Metadata Code Example

~ Text Detector

Detect text with coordinates and confi-
dence scores in an image by EasyOCR.

Metadata Code Example

{ Google Search

Search the Google website for relevant
information based on a given query.
Code

Metadata Example

=i Image Captioner

Generate a caption for a given image
with a text prompt.

Metadata Code Example

@ Object Detector

Detect objects in an image using the
Grounding DINO model.

Metadata Code Example

£ URL Extractor

Visit the given URL and extract all text
from that page.
Code

Metadata Example

T AEXTF Video Agent i ZENHEEIFRY,

& Relevant Patch Zoomer

Locate and zoom in relevant quarter
patches in an image given a question

Metadata Code Example

€ Wikipedia Search

Search Wikipedia for relevant informa-
tion based on a given query.
Metadata

Code Example

Python Interpreter

Generate and execute Python code
snippets for basic calculations.

Metadata

Code Example

TR ILERAMIES, Video Agent BEATLAERIX TR,

SEFNET

1516 = A SR f

2

BN
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$F—2: XL Video Toolkit

. BLIP
48 N LLaVA
- e
2.1
\ 213
9

361319 37 25

Temporal Tools Spatial Tools Both General Tools

Frame Selector [ Object Detector M Google Search Video QA
‘Temporal Grounding Bbox Marker Object Identifier I Text Summarizer
W Temporal Refer [ image Captioner Action Recognition
Video Trimmer T Image QA Image Grid QA
Action Localization Text Detector I Multiple Image QA
I Relevant Patch Zoomer — python Code Generator
Semantic Scgmentation [ Object Tracker

I Video Summarizer

18: Video Toolkit HEAE T ZHELEMMM TR, A4 ARET
. sEIAS5@EAIE.
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EF MABRAITRRRE

BN TIARSZE, MfAEiFthFERAXLTA?
HWETR “AEEFRT BER:
° BELHL?
o BEE?
e TEHHHKE -> 2GRS FIHAIRAHRITZHHIE?
Tool Learning B985, itk TESE (BN TEFEARAMLERINRF) =
EREIRIT L mAVIERR, mETRIMEREMNRTT.

BERFUENR/FHEHR
30 / 52




Tools & Memory: T EfHfEE
0000000 @00000000000

F LA A TR RS

Methods Accuracy T Num of Frames | Toolchain Length T Num of Tools 1
No Constraints 61.2 112.6 29 13
Prompting 60.4 98.7 3.6 1.9
In-Context Learning 63.2 50.1 5.4 3.2
Spatiotemporal Disentanglement 68.6 40.6 5.6 3.4
STAR 70.0 (1.4 1) 30.2 (10.4 |) 8.7(3.11) 6.3 (291)

ERTZMIRIFARE:
® No Constraints: TR EH, %52 Toolchain Shortcut
® Prompting: 7E prompt i “(2E3K”
¢ In-Context Learning: BIIfIFR5E
e Spatiotemporal Disentanglement: ZEXiEE & iFRKf 8 T A
M=EIE, #RE7TRFNER

HERFUHHNR/FRBE

31 2
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Tools & Memory: T EfHfEE

0000000000000 00000

Q  spaial Tool
\

@ (9 Temporal Tool

Toolkit

.
General Tool
?

(a) 3 types of tools

-

L 3D Region of Interest (3D Rol)

\\_determined by spatial and temporal tools /"

%

{

‘1§V©§§©%'

i (3% place) Toolchain Shortcut

aQ>Q 4

§ oo%?
Y O=07 ’

Spatiotemporal-Disentangled Toolchain

Q @ N
\ \ @-
S, o, Kol

O O

Spatiotemporal-Interleaved Toolchain

o &

(b) 3D Rol

(€) 3 types of toolchains

B 19 AL LSRR EA £, MALSHA Iy B A0 = 8] 7 N 4EEE Y A8 1)
A, BET 3MEMNTARE: (1) IR EFRNIAE (2) HEm
FEEMERBNIAR 3) NEMTEEHERZE. EHEFHANIARE,
BIanasE E A BRBHMEGRLAE. RENZIREEZ 3) > (2) > (1)

HERFT
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Z8 (STAR)

In this video, by using a tractor, how many times faster is the cultivation of the same land
r?

compared to manual labor '
1
Calling temporal-grounding-tool to ground the tractor. |
1
@ Temporal-grounding-tool: Tractor appears from frame - 170 to - 190
Calling image-caption-tool for the 20 frames from <170~ t0 <190, &
Video Toolkit Q "maze-caption-took: .17 : The image s composed of o pictures.Inth frst

picture, two people are working together to plow the field, while in the second picture, a
single person s operating the tractor. The texts in the image indicate the time it takes to
complete the task...

Calling frame-selector to select key frames. (&)

cription
nput Types . » N
st ess ©  Frame-setector: Look inoall currnt visible frames,frame - 76 seected
Output Ty
Metadata
Tool Card
Frame <17

Visible Frames It seems there are some texts in the image. Calling OCR-tool for frame <176

Q' OCR-tool: “45 min™ and “45 sec” in frame - 176
Calling summarizer to summarize all the information. @

X Summarizer: Using a tractor is 10 times faster than manual labor.

ERERZHEANEBIANZE IR, REHEM
Video-Language Model {£4 fallbacke
BHE BRI HAF, FRB

516 = A ST R AR A



Tools & Memory: TE
OOOOOOOOO0.00000000

LG 45

S

700 EQwen-VL-2.5-7B [11 I
70 i nternVL3-8B [4] 72 °
66.3 == GPT-40 [9] 70

mmSTAR (ours) 68

3

Accuracy (%)
g2828

Accuracy (%)

8 -/\ — LLoVi [20]
56 N —— VideoAgent [15
— VideoTree [17]

AKeyS [2]
— STAR (ours)

. ) 2 2 7 2° 2’
VideoMME LongVideoBench Number of frames processed

ZE: STAR BIY% GPT-40 MR ERTH, KBRFEHRE,
AE: Star EEHEEHIDRERMRRBM YT BMH (scalability)
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SPOA 4
SLUG 75

Model Size Frames| Runtime| Short?t Medium{ Long? All 1
Proprietary Image-based MLLMs
GPT-4o [41] - 11fps/384 > 10 min 80.0 70.3 65.3 71.9
GPT-40 - 32 <30s 68.3 60.7 56.3 61.8
GPT-40 + T* [69] - 32 30s - 1 min 69.5 63.5 59.3 64.1
GPT-4v [40] - 10 <30s 70.5 55.8 535 60.0
Gemini 1.5 Pro [15] - 0.5/1 fps > 10 min 81.7 74.3 67.4 75.0
Claude 3.5 Sonnet [1] - 20 <30s 71.0 574 512 60.9
Open-source Video-LLMs
Qwen2-VL [55] 72B  2fps/768 6 min- 8 min 80.1 71.3 62.2 71.2
Qwen2-VL 7B - - - - - 63.3
Qwen2.5-VL [2] 7B - - - - - 65.1
InternVL2.5 [6] 8B 64 <30s - - - 64.2
InternVL3 [75] 8B 64 <30s - - - 66.3
VideoLLaMA3 [71] 7B 180 30s-60s 80.1 63.7 54.9 66.2
mPLUG-OwI13 [68] 7B 128 30s-60s 70.0 577 50.1 59.3
STAR (ours) - 30.2 158s 78.9 68.3 629 70.0(821)

20: £ VideoMME benchmark EEUE T RERRE: GPT-40 £ EE
TEZE, B 8.2% EMmENET.
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SRS

Model Params Frames | Runtime | 8s- 15s-  180s- 900s- AllT
1551 60st 600st 3600s+

Proprietary Image-based MLLMs

GPT-40 [41] - 256 > 10 min 716 768  66.7 616 66.7

GPT-40 ) - 32 <30s 607 624 501 49.0 52.6

Gemini 1.5 Pro [15] - 256 > 10 min - - - - 64.0
Open-source Video-LLMs (~7B)

Qwen2.5-VL 7B 1fps/512 1min-3min 590 656 529 48.8 53.7

InternVL3 8B 256 Imin-3min 547 669  46.1 44.0 48.9

STAR - 29.6 1535 636 68.0 5638 523 572(467)

B 21: 7£ LongVideoBench EEV{S 7T REERIR: GPT-4o HEETHR
ZE, B 4.6% EHEMNRTT.
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SLIS 7

Method Base Model Frames| Cau.? Tem.t Des.?t All 1
Open-source Video-LLMs (~7B)
InternVL3-8B [75] - 8 71.5 72.1 77.1 75.7
Qwen2.5-VL-7B - 2 fps 80.6 79.3 85.5 80.9
(M)LLM-based Frame Selection Methods
VideoAgent [56] GPT-4 8.2 64.5 72.7 81.1 71.3
VideoTree [60] GPT-4 63.2 70.6 76.5 83.9 75.6
LVNet [42] GPT-40 12 65.5 75.0 81.5 72.9
VidF4 [29] - 8 69.6 74.2 83.3 74.1
AKeysS [9] GPT-40 7.6 72.9 79.0 86.1 78.1
Detector-based T [69] GPT-40 8 - - - 80.4
STAR (ours) GPT-40 7.2 81.1 81.5 86.3 821(1.21)

22: 7£ NExT-QA benchmark £, 5EEXEWIMENE X ELLE
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ISM e

Method Base Model Frames | #LLMcalls| Cau.t Tem.?T Des.t All T
LLM-driven Tool Learning Methods

ViperGPT [49] GPT-3 Codex - - 432 410 623 45.5

VideoChat [24] - - - 50.2 470 657 51.8

DoraemonGPT [66] GPT-3.5-turbo  28.7 fps / 1144.4 8.5 54.7 504 703 55.7

STAR-MINI (ours)  GPT-3.5-turbo 0.6 fps / 22.6 54@3.1)) 62.8 55.1 737 62.0(6.31)

23: ¥£ NExT-QA benchmark £, SHET BAREXELLE
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In this video, how is the smoke generated by the man depicted in the video? Select from the below options: A. burning a picce
of cloth. B. By lighting a torch. C. By smoking. D. By lighting a bonfire.

Calling temporal-grounding-tool to ground smoke. (&)
Temporal-grounding-tool: Smoke appears from frame ¢~ to 15,

Calling action-recognition-tool to recognize the man’s action from frame -~ to <15~ @

recognized.

Calling frame-selector to re-select keyframes. (&)

Q  Action-recognition-tool: Frame - : No action recognized. Frame 12-:The man is lighting a fire. Frame - 15+ No action
@ Frame-selector: Frame - 12~ selected.

P

Frame < 12-:
Calling image-QA-tool for frame - 17 . Question: What does the man set fire t0? (&)

Image-QA-tool: Answer: The man set fire to a heap of wood.

e T T L .

X £

1
1
1
1
1
]
1
1
I
1
1
\
|
1
1
|
[ryve— \
i
I
1
|
\
I
1
1
1
1
1
\
1
1
'

Text Summarizer: Answer is D, the man lights a bonfire.

[}
1
1
1
1
1
1
\
i
1
1
1
1
1
1
|
I
1
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\
1
1
1
I
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|
|
I
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24: T BE T TERMEE (Tool-integrated Reasoning) , fERTE]IFN
TELESEBIEXBAR, MmEREI-.
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Tools & Memory: T EfHfEE
000000000000 0000e00

STAR 2&1L TEFEREMYE?

Tool Type & Name No Constraints (%) STAR framework (%)

Temporal Tools All 321 357

Frame Selector 271 213

Temporal Grounding 21 82

Temporal Referring 00 14

VAT 3 2o Tool Type Var. of No Constraints Var. of STAR framework

Action Localization 16 22

Spatial Tools All 0 = Temporal Tools 134.26 69.90 (64.36 |)

Object Detector 23 102 Spatial Tools 41.34 11.09(30.25 |)

Bbox Marker 02 13 Both 092 295203 1)

Image Captioner 21 79

Image QA 178 56 General Tools  307.45 9.69 (297.76 |)

Text Detector 10 25

Relevant Patch Zoomer 02 37

Semantic Segmentation 00 19

Both (Temporal and Spatial Tools) All 5.4 161

Google Search 03 13 = R z] - IE‘1§JEH AE $

Object Identifier 10 26 25 - ZE b %$I:|1 ~ y}ﬁ\/ =
. ) - SR

= 7 Bt AR TEXRKNFER

Image Grid QA 01 57

TR, = = N

Python_Code_Generator 00 14

Object Tracker 07 15

General Tools All 389 151

Text Summarizer 22 83

Video Summarizer 35 21

Video QA 32 47
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Tools & Memory: T EfHfEE
000000000000 00000e0

scalability

Model LLM Planner Average Frames Short (%) Medium (%) Long (%) All (%)

GPT-40 - 32 68.6 60.6 56.0 61.5
GPT-40 - 100 72.8 63.2 59.5 64.9
GPT-40 - 1fps/384 79.2 704 66.5 71.8
STAR  GPT-4o0 31.3 78.2 68.7 62.7 69.6 (8.1% 1)
STAR  GPT-4o0 100.2 80.1 71.0 66.4 72.4(7.5% 1)
STAR  GPT-4o 0.98 fps / 384 85.3 78.0 68.5 77.0(5.2% 1)

26: MEBEREEMIEN scale




Tools & Memory: T EfHfEE
000000000000 000000e

generalizability

Model LLM Planner Average Frames Short (%) Medium (%) Long (%) All (%)
GPT-40 - 32 68.6 60.6 56.0 61.5
Gemini-2.5-pro - 32 77.6 62.6 57.1 65.4
Qwen2.5-VL-72B - 32 68.9 58.8 55.4 60.8

STAR GPT-40 313 78.2 68.7 62.7 69.6(8.17)
STAR Gemini-2.5-pro  31.0 79.8 70.7 69.1 729(7.51)
STAR Qwen2.5-VL-72B 31.5 77.9 66.1 62.4 68.5(7.71)
STAR DeepSeek-R1 31.2 77.2 67.2 63.0 68.9

27: BEZEIAREAY LLM Planner
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Video Agent B¥r: F VideoQA RIERRFIEK,
* Planning: EAMRXEMIERFEE AKEYS, KEBAFT
® Tools & Memory: Zi1E7T Video Toolkit, {F STAR A&
WIRMESR, EAE
AEZBRNEER: STAR #EZRAAIATE LTH Frame Selector &K
& AKEYS B EIZEE.
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ARFIIE: EERMIG-ESERES

o EK. EEXMIIIER (BIUEELRF)

o BEARMEIELZ (online) EIEY (real-time) HEIE?

o HZFAMMMST (FIANIRFER B FHAEIE) HIREVENIR?

o M EREMR (visual agent ) BERERFEN SN SE BAHNAES?

o EXNAFIEMES, T MISRBFE P RBU)IZEIESH
TF (trajectory), >RiJllZRiZFHEEY & BEMARIZRIN?

Busihe_ss‘m Business
e T4k

28: AERXERNPSRBIETEA E 29: ATREMMIRIZR: GUI
Al FHERIR Agent
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